3.2004 \(\int \frac{\sqrt{d+e x}}{a d e+(c d^2+a e^2) x+c d e x^2} \, dx\)

Optimal. Leaf size=65 \[ -\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{d+e x}}{\sqrt{c d^2-a e^2}}\right )}{\sqrt{c} \sqrt{d} \sqrt{c d^2-a e^2}} \]

[Out]

(-2*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[c*d^2 - a*e^2]])/(Sqrt[c]*Sqrt[d]*Sqrt[c*d^2 - a*e^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0445752, antiderivative size = 65, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.081, Rules used = {626, 63, 208} \[ -\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{d+e x}}{\sqrt{c d^2-a e^2}}\right )}{\sqrt{c} \sqrt{d} \sqrt{c d^2-a e^2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2),x]

[Out]

(-2*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[c*d^2 - a*e^2]])/(Sqrt[c]*Sqrt[d]*Sqrt[c*d^2 - a*e^2])

Rule 626

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c*x)/e)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x}}{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx &=\int \frac{1}{(a e+c d x) \sqrt{d+e x}} \, dx\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{-\frac{c d^2}{e}+a e+\frac{c d x^2}{e}} \, dx,x,\sqrt{d+e x}\right )}{e}\\ &=-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{d+e x}}{\sqrt{c d^2-a e^2}}\right )}{\sqrt{c} \sqrt{d} \sqrt{c d^2-a e^2}}\\ \end{align*}

Mathematica [A]  time = 0.0161823, size = 65, normalized size = 1. \[ -\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{d+e x}}{\sqrt{c d^2-a e^2}}\right )}{\sqrt{c} \sqrt{d} \sqrt{c d^2-a e^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2),x]

[Out]

(-2*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[c*d^2 - a*e^2]])/(Sqrt[c]*Sqrt[d]*Sqrt[c*d^2 - a*e^2])

________________________________________________________________________________________

Maple [A]  time = 0.194, size = 48, normalized size = 0.7 \begin{align*} 2\,{\frac{1}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}\arctan \left ({\frac{\sqrt{ex+d}cd}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x)

[Out]

2/((a*e^2-c*d^2)*c*d)^(1/2)*arctan((e*x+d)^(1/2)*c*d/((a*e^2-c*d^2)*c*d)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.83507, size = 325, normalized size = 5. \begin{align*} \left [\frac{\log \left (\frac{c d e x + 2 \, c d^{2} - a e^{2} - 2 \, \sqrt{c^{2} d^{3} - a c d e^{2}} \sqrt{e x + d}}{c d x + a e}\right )}{\sqrt{c^{2} d^{3} - a c d e^{2}}}, \frac{2 \, \sqrt{-c^{2} d^{3} + a c d e^{2}} \arctan \left (\frac{\sqrt{-c^{2} d^{3} + a c d e^{2}} \sqrt{e x + d}}{c d e x + c d^{2}}\right )}{c^{2} d^{3} - a c d e^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="fricas")

[Out]

[log((c*d*e*x + 2*c*d^2 - a*e^2 - 2*sqrt(c^2*d^3 - a*c*d*e^2)*sqrt(e*x + d))/(c*d*x + a*e))/sqrt(c^2*d^3 - a*c
*d*e^2), 2*sqrt(-c^2*d^3 + a*c*d*e^2)*arctan(sqrt(-c^2*d^3 + a*c*d*e^2)*sqrt(e*x + d)/(c*d*e*x + c*d^2))/(c^2*
d^3 - a*c*d*e^2)]

________________________________________________________________________________________

Sympy [A]  time = 2.71218, size = 48, normalized size = 0.74 \begin{align*} \frac{2 \operatorname{atan}{\left (\frac{\sqrt{d + e x}}{\sqrt{\frac{a e^{2} - c d^{2}}{c d}}} \right )}}{c d \sqrt{\frac{a e^{2} - c d^{2}}{c d}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2),x)

[Out]

2*atan(sqrt(d + e*x)/sqrt((a*e**2 - c*d**2)/(c*d)))/(c*d*sqrt((a*e**2 - c*d**2)/(c*d)))

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="giac")

[Out]

Timed out